STACK (MDU) LNB
Bu LNB nin giriş frekans aralığı 11.470 11.680 GHz, çıkış frekansları da RF (UHFnin pek kulanılmayan üst bandlarındadır). LNB uydudan gelen yayınların V(dikey) olanlarını 505 715 MHz, H(yatay) olanlarını da 765 845 MHz arası bir bandına indirmekte. Kazancı 50 63dB dir. Bu LNB ile birlikte kullanilabilecek bir de up converter vardır. Bununla LNBden 505 845 MHz arasındaki bant 1715 2055 MHz arasına yükseltiliyor. Böylece uydu alıcısı yayınları aynen normal LNB den gelenler gibi görmektedir. Konvertörün diğer çıkışından da kablodaki diğer (RF) yayınlar alınması sağlanıyor. Böylece en kötü kalite koaksiyel kablo ile en uzun mesafeye LNB den gelen uydu yayınları kolayca taşınabilmektedir.
FEED
Önde feed denilen yakın yerlerden yansıyıp gelen istenmeyen mikrodalgaları süzen, diğerlerini toplayıp yükselticinin probuna gönderen yuvarlak parçadır. Feed kısmı prensip olarak bir dalga klavuzu ile yansıtıcıdan oluşur. Yansıtıcı ağız kısmı yan açılardan gelip oluklu kısmın içine düşen dalgaları gönderir. Konsantrik (eş merkezli) dairesel duvarlar içeren ağız kısmı bu işlevini uygun şekilde yerine getirebilmesi için de çanağın şekline(parabol) uygun bir dairedir. Oluk duvarların derinliği çanağın odak uzaklığının çapına oranı (f/D) özelliğine göre hesaplandığından aynı tipte ve çaptaki çanaklardan daha çukur veya daha düz özellikte olanları için farklı ölçülerde olacaktır. Prime-focus (parabol) antenlerde kullanılan feedlerde bu duvarlar aynı düzlemdedir. Offset antenler için olan feedlerde ise dıştan içe doğru derinleşir geometridedir. Feed içinin yuvarlak olması her polarizasyonda gelen dalgayı aynen taşıyan bir dalga klavuzu olmasındandır. (Köşeli olsa idi sadece düzlem yüzeylerine uygun polaritede gelen dalgaları taşıyabilirdi). O yüzden yuvarlak ağız kısmının içine düşen ayakta duran mikrodalga (standing wave) bağlanacak LNB nin probuna verilmek istenen polariteye uygun polarma yapılarak doğrudan iletilir. Feedin önemli kalite özelliklerinden birisi polarizasyon yalıtımıdır (cross polar discrimination=polarizati on isolation). Yani bu polarmayı yaparken karşı polariteden de sızma olmayacak (örneğin 25dB polarma yalıtımlı) mekanik kusursuzluğa sahip olması gerekir. Bu olmazsa öbür polaritedeki benzer frekanslı yayin karışma yapabilir bu da yayının düzgün şekilde alınmasına engel olur. Feedin bir kalite özelliği de gerilim dalga oranı (VSWR) dir. Feedin iç yüzeylerinin geometrik kusursuzluğu verimde önemli olmaktadır. Giriş kısmındaki dairesellik ve örneğin gelen dalgayı polaritesine göre ikiye ayıran bir (orthomode transducer) dalga klavuzunda LNB bağlanan dörtköşe dalga çıkış uçlarında yüzey düzlemliği cok önemlidir.
Dolayısıyla feed kısmı kullanılacağı çanağın cinsine(offset /prime focus), çanağın çukur veya düz oluşuna (f/D ölçüsüne), hangi banttaki yayınların alınacağına (C/Ku), alınacak yayınların polaritelerinin doğrusal veya dairesel oluşuna ve tek çıkışlı çok çıkışlı, polarizörlü polarizörsüz oluşuna göre çok farklı özellik ve tiplerde olur. Ayrıca çanak çapı çok büyüdükçe feedin oluklu ağız kısmının çapının da biraz büyümesi beklenir. Hem dairesel hem doğrusal yayınları alabilen feedlerin içinde depolarizör denilen ve dairesel (R/L) polarizeli dalgayi doğrusal düzlemlerden (V/H) birine aktaran ve (çeyrek dalga boyunun 6mm dolayında olduğu ve yüzde 1-2 hassasiyet gerektiği düşünülürse) mekanik olarak 0.1 mm hassasiyetle işlenmiş bir teflon levha bulunur. Depolarizör dışında mekanik bir polarotörle kutupları 45 derece döndürmek de ayrıca gerekir. Servosuz bir feedle bu mümkün değildir.
Ku bandındaki hem dogrusal (V/H) hem de dairesel (RHC/LHC) yayinlari alabilmekte kullanilan servomotorlu bir offset anten feedi. Bu feedin polarizasyon yalitimi 25dB, VSWR bandın tümü için ortalama 1.45 (alt bant icin ayri üst bant icin ayri modelleri mevcut. feed alt+üst bant üniversal kullanılmıyor).
LNBF / FLANSLI LNB
Küçük boyutlu offset çanaklarda genellikle feedin LNBnin ayrılmaz şekilde tümleşik bir parçası olduğu LNBF kullanılır. Çanağa tek parca LNBF takılıp ucuna kablo bağlandığından feedin içini görmek de bilmek de gerekmez (su geçirmez şekilde kapatılmıştır). Bilmemiz gereken tek şey çanağımıza ve almak istediğimiz yayınlara uygun offset feedli bir LNBF olduğudur. Bu LNBlerdeki feed yapısı sadece lineer (V / H) yayınları almaya uygun özelliktedir.
Kendinden feedli LNB = LNBF çeşitleri
Daha büyük çaplı parabol (prime-focus) çanaklarda ise feed genellikle çanakla birlikte satılır. Çanağa uygun bir feed kullandığınızdan emin olabilmeniz için bu gereklidir. O yüzden çanakla birlikte aldığınız feed satın alacagınız flansli LNB ye takabilmeniz için tam doğru standart ölçüde vida delikleri bulunan bir flansa sahiptir. Eger lineer Ku bir LNB kullanacaksanız çanakla birlikte verilen feed genellikle size uyar. Eger amacınız C bandı veya dairesel polarizeli yayınları almak ise o zaman farkli bir feed kullanmanız gerekir. Böyle bir feed genellikle çanağınızla birlikte verilmez ayrıca temin etmeniz gerekir ve bu durumda da çanağınıza uyumu önemli hale gelir. Özelikle bilmeniz gereken şey feedlerin farklı dalga klavuzu boylarına sahip olduğu ve antenin kelepçesine bağladığınızda bilmeden odak uzaklığını değiştirebileceginizdir. Çanak üreticinizin bildirdiği odak uzaklığı ölçüsü genellikle feed agzından çanak dibine ölçülür. Bir feedi kullanabileceginizden emin olmak için kelepçeye bağladıktan sonra ağızdan çanak dibine ölçtüğünüzde canağınızın 94.3mm şeklinde verilen odak uzaklığına milimetrik olarak bulabilmeniz gerekir. Feedi ileri geri hareket ettirerek sinyal siddetini maksimum olarak yakaladığınız konum çubuk boyu ayarlarıyla elde edilebilmelidir. Ayrıca kelepçe düzeni feedinizin boynuyla sorunsuz ayarlama ve sabitleme yapilabilmesine uygun şekilde olmalıdır.
Flanşlı (Feedsiz) LNB çesitleri.
Uygun özellikte feed ağız kısmına vidalanarak kullanılır.
Feedin hemen arkasına vidalarla bağlanan flanşlı LNB nin beklenen özellikler ve iç yapısı bakımından LNBF den farkı yoktur. Yükseltici ve Konvertör kademelerinden oluşur. Eskiden (ve halen bazı profesyonel sistemlerde) LNA yükseltici kademesiyle LNC konvertör kademesi birbirine bağlanan ayrı modüller olarak bulunmaktadır. Ancak bugün LNB dendiğinde de LNC dendiğinde de tümleşik yükselticili konvertör aklımıza gelmektedir. LNA (Low Noise Amplifier) denilen yükseltici kısmi probuna kadar gelen mikrodalgayı elektrik akımı halinde gürültüsüz yükseltmek işlevine sahiptir. Bu işi görürken sinyale olabildiğince az gürültü katılmasi beklenir. NF (gürültü değerinin dB veya K değeri) sinyal/gürültü oranı düşük olan LNB ler tercih edilir. Aslında Ku bandı LNB lerde genellikle Noise Figure (dB) ile, C bandı LNBlerde ise Noise Temperature (Kelvin) olarak ifade edilen bu değer tüm sistemin etkinliği demek olan C/N (taşıyıcı sinyal seviyesinin gürültüye oranı) içinde çok da önemli olmayan bir paya sahiptir. Yayının EIRP (dBW) değeri, çanağın çapı, etkinliği, gürültü ısısı, sistemin gürültü değeri, bant genişliği gibi birçok değerin içinde bu değer de belirli ölçüde etkinliğe sahiptir. Bu değerlerin toplam etkinlik hesapları içinde göreceli yerini daha iyi anlayabilmek için önde gelen LNB üreticisi SMW nin bedava yüklenen yeni versiyon SMWLINK3 programını mutlaka çekmenizi öneriyorum. Ancak daha önceki 2. versiyonu da özellikle çok odaklı (multifocus) antenlere ilişkin hesap programları nedeniyle gerçekten görmeğe değer. (Ben sizin yerinize olsam her ikisini de çekerdim). Türkiyede önceleri 1.7-1.8 değerli LNB ler kullanılırken teknolojinin gelişmesi sonucu su anda en yaygın olarak kullanılan LNB ler 0.7- 0.8 dB gürültü faktörüne sahiptir. 0.6 ile 0.5 dB özellikte olanlar da bulunabilmektedir. Çok düşük gürültü değerine sahip LNB lerin göreceli fiyatı çoğu zaman sağladığı yarardan fazla yüksektir. Üstelik kuşkusuz bir LNB nin değerini olusturan parametreler cok daha fazla ve değişiktir. Örnegin bir LNB nin calışması gereken çok farklı ortam sıcaklıklarında bazı özelliklerinin değişip değişmemesi (temperature stability), ve osilatörünün faz gürültüsü (phase noise) özellikle veri aktarımlarında çok önemli olmaktadır. Örneğin çalışılan tüm farklı ortam sıcaklıkları içinde lokal osilatör stabilitesinin +/- 150, +/- 25 veya +/- 10 kHz mertebelerinde tanımlanabilmesi PLL li osilatörle sağlanan bir sonuçtur ve bu tip LNB ler özellikle pahalıdır.( +/- 3 MHz iyi bir degerdir) Osilatör faz gürültüsü 1KHz den itibaren yapılabilmektedir.(-75 dBc@10 kHz typ iyi bir değerdir). Bu ise aktarımda gerçekten düşük BER (Bit Error Rate) sağlanabilmesi sonucunu vermektedir. Farklı frekanslarda kazanç değişiminin engellenmesi de önemlidir örneğin iyi bir LNB de bu özellik 30MHzde 0.3dB dolayında olmaktadır. çıkış SWRsi en cok 2:1″ gibi bir değerle ifade edilir . Hemen tüm LNB tiplerinde cikis empedansı 75 ohm ve F tipi konnektör olarak standartlasmış gibidir. Giriş kısmında iki doğrusal polarite için gerilim kontroluyla seçilebilen V=14V, H=18V çift problu switchable tip de Ku bandı için artık standartlaşmış kabul edilebilir. Halen Standard Ku LNB denilince akla 10.0 GHz lokal osilatörlü Marconi switching(V/H) LNB gelmektedir. Bu tip LNB 12.5v 14.5v besleme gerilimini vertikal(dikey),15.5 18v besleme gerilimini ise horizontal(yatay) polarite seçimi kabul etmektedir. Daha sonra ortaya çıkan ve Enhanced LNB denilen tipin bundan farkı lokal osilatör frekansının 9.75 GHz olmasıdır. Ama bu da tek bantlıdır ve sadece 10.7-11.7 GHz. aralığında 2 GHz tunerli uydu alıcılarıyla calışır ve Astra 1A-D arası uydular için düşünülmüştür. Daha sonra ve özellikle digital yayınların başladığı son yıllarda ortaya çıkan ve yeni kullanıma açılan 11.7 GHZ üstü frekanstaki yayınları da alabilmek üzere gerekli sisteme sahip Universal LNB ortaya çıktı. Bu LNB lerin farkı çift lokal osilatör (9.75 and 10.60 GHz L.O) kullanılması ve birincisi 10.7 11.8 ve ikincisi 11.6 12.7 GHz olan iki bant arasında uydu alıcısından gönderilen 22 kHz sinyaliyle seçim yapılabilmesiydi. Artık hemen tüm avrupa uydularında üst bant yayınlar kullanıma açıldığından bu 4 bantlı (Quad Band) sistem standart hale gelmiştir. Bu arada kullanılan uydu alıcıları da 2.15GHz tunerli olmuşlardır. Tarama sahası daha az olan uydu alıcıları arada boşluk kaldığı için bazı yayınları alamayabilir. Alt üst bant geçişi için bu LNB bir 22kHz (0.5v p-p) sinyale gerek duyar ve bunu gördüğünde lokal osilatörünü 10.6GHz (üst banda) geçirir ve aksi halde hep 9.75GHz osilatörünü kullanarak sadece alt banttaki yayınları alır. V/H polarite algılaması yukarıda anlatılan eski Marconi LNB tipindekiyle aynıdır.
(L.O.) Local Oscillator (yerel osilatör) frekansı nedir?
LNB nin esas bir işinin de uydudan gelen frekansı düşürmek (down conversion) olduğunu biliyorsunuz. Çünkü kablolarımız 2GHz üstünde frekansları taşımakta çok isteksizdir. Uydu alıcılarındaki eski tip tunerler 1.75GHz e kadar yenileri ise 2.15GHz frekans üst sınırına sahiptirler. LNB frekans düşürme işlemini uydu sinyal frekansından belirli bir frekans değerini çıkartarak yapar. Bu değere LNB nin Lokal Osilatör frekansı ya da (LO) su denir. Örneğin uydu alıcınızdaki tunerin üst sınırı 1.75 ise ve almak istediğiniz en üst uydu frekansı 12.6 GHz ise LNBnizin L.O. su 10.85 olmalıdır. L.O.su 10.25 ise LNB niz 12GHz frekanslı bir uydu yayınını (12GHz 10.25GHz = 1.75GHz) uydu alıcınıza üst sınırı olan 1.75GHz frekansında gönderecektir. Farklı LNB tipleriyle ve uydu alıcılarla belirli frekanstaki yayını doğru alamama sorunu aslında basit hesapla açıklığa kavuşturulabilir. Simdi bizim bölgemizde geçerli olan Ku bandı frekansları (Telecom bandı) üst sınırı 12.750 GHz dir. Bugün Türkiyede satılan hemen tüm uydu alıcıları da 0.95 2.15GHz tunerlidir. Üst bant lokal osilatörü 10.6 olan bir üniversal LNB için taranabilecek frekanslar 2.15 + 10.6 = 12.75GHz bandın en üstüne kadar ulaşabilmektedir. Alt sınır ise 0.95 + 9.75 = 10.700GHz olmaktadır.
Eski tip LNB ve uydu alıcılar Bu günkü universal LNB ve 0.95 2.15GHz tünerli uydu alıcısı standardına ulaşılıncaya kadar yakın geçmişte birçok asamada ürünler ortaya çıkmıştır. Örneğin bugün bizim için artık geçerli olmayan eski tip bir alicinin tüneri 0.95 1.75GHz dır. Bu alıcı bir FSS LNB (10.0 GHz L.O.) ile kullanılırsa bulunubilecek kanal bant 10.9 11.7GHz arasıyla sınırlıdır. Eğer bir DBS LNB (10.75 GHz L.O.) kullanılırsa 11.7 12.5 GHz arası taranabilir. Sonuçta böyle iki tane LNB + bir tane Orthomode transducer + bir tane de 22KHz sviç bugünkü universal LNB ile sağlanan sonucu (biraz eksik olarak da olsa) vermektedir. Eskiden 0.95 1.75GHz tunerli alıcılarla çalışmak üzere tasarlanmis böyle birçok çeşit LNB bulunmaktadır. Telecom LNB (11.0 GHz L.O.) bunlardan bir diğeridir. 11.95 12.75 GHz bandında kullanilabilir. Voltaj (V/H) anahtarlaması bulunur. Voltaj anahtarlamasıyla üst banda geçirilen iki bantlı Dual band LNB de 0.95 1.75GHz tunerli alıcılarla 10.9 11.7 ve 11.7 12.5 GHz olmak üzere her iki banttan da yayın alabilir.Bu LNB ile alınamayan üst bant kısımları için Tripleband LNB geliştirilmiştir. Bu LNB 0.95 2.0 GHz tuner ile 10.9-11.8 ve 11.8-12.75 GHz arasindaki yayınları alabilir. Alamadığı en alt banttaki yayınları da alabilmek üzere Quadband LNB geliştirilmiştir. Bu LNB 0.95 2.05 GHz tuner kullaılarak 10.7-11.8 ve 11.7-12.8 GHz olmak üzere bugünkü bandın tümünü alabilir. Bu eski tip LNBlerin coğu flanşlı (ayrıca feed vidalanan) tiptedirler ve gürültü değerleri en eski tiplerde 3.0 dB ye kadar çıkmaktadır. (Bu gün ortalama 0.8dB yaygındır).
Çok girişli(multifocus) ve cok çıkıslı LNB ler
Halen avrupada en yaygın olarak kullanılan Astra + Hotbird başta olmak üzere birbirine yakın 2 uydunun yayınlarını tek çanakla alabilmek için geliştirilmiş (multifocus) çanak ve LNB ler bulunmaktadır. Monoblok bu LNB aslında 2 feed + 2 universal LNB + DiSEqC sviçten oluşmaktadır ve bir tek F konnektörlü çıkışa sahiptir. Alıcı DiSEqC, 22KHz ve 14/18V besleme seçimlerini kullanarak heriki uydunun toplam 8 polaritesindeki birkaç bin farklı kanal uydu yayınından istediğini seçebilmektedir. Bu tip LNBler ancak birbirine sabit mesafedeki öngörüldüğü iki uydu için kullanilabilirler. Degişik mesafedeki uydulardan tek canakla yayin alabilmek için kulanilan ceşitli multifocus uygulamalari bulunur.
Bu tür ve diğer çok çanaklı uygulamalarda kullanılabilmek üzere geliştirilmiş kendinden DiSEqC sviçli bir giriş ve bir çıkış F konnektörü bulunan geçisli LNB tipleri vardır.
Bunların dışında 2 çıkış F konnektörü bulunan Dual ve Twin LNBler bulunur. Bunların Standard, Enhanced ve Universal tipleri bulunur. Dual LNB tek bandın tek polaritesini (V-Dikey) bir çıkış tek polaritesini (H-yatay) diğer çıkış sabit olarak verir. Dual ve Twin LNBlerin dış görünüşleri birbirine çok benzer, ancak örneğin Twin Universal bir LNB nin iki çıkışının herbirinde tek üniversal LNBde bulunan 4 polarite de bulunur.İcinde aynı feede bağlanarak tek kabinin içine yerlestirilmis 2 tane üniversal LNB bulunur. Böyle bir LNB ile tek canağı paylaşan iki uydu alıcısı iki ayri çanak varmış gibi birbirinden bağımsız olarak tüm kanalları izleyebilirler. Dual LNB ise bir merkezi dağıtımda hem V(dikey), hem de H(yatay) polaritelerini aynı anda dağıtabilmek için kullanılır. Dört çıkışlı LNBler de Quad ve Quattro olmak üzere 2 ana türdedirler ve bunların da Standard, Enhanced ve Universal tipleri bulunur. Quad universal LNB bir canagi 4 farklı kullanıcıya birbirinden bagımsız olarak tüm polariteleri izleyebilecekleri şekilde dağıtmakta kullanılır. İçinde ayni feede bağlanarak tek kabinin içine yerleştirilmiş 4 tane üniversal LNB bulunur. Quattro LNB ise herbir çıkışından AltV(Dikey), AltH(yatay), üstV(dikey), üstH(yatay) olmak üzere 4 farkli polariteyi aynı anda vermektedir. Her çıkışında sadece ait olduğu polarite bulunur. Bir merkezi sistemden dağıtım için (headend de) kullanılır.
Aslında, terminoloji bakımından avrupa ile atlantiğin diğer yakası arasında önemli bir fark da var. Amerikada Dish Networkun iki farklı konumdaki uydularındaki tüm yayınları alıp birbirinden bağımsız iki uydu alıcıya verebilen (iki giriş, iki çıkışlı) LNB lere TWIN, dört çıkışlı olanlarına Quad deniyor. Tek konumdaki uyduların yayınlarını alıp iki alıcıya verebilen (tek giriş iki çıkışlı) LNB lere de DUAL deniyor. İki girişli Monoblok LNBlerin konumu cok özel olduğundan bu durum pek karışıklık yaratmayabilir, ancak avrupada şimdiden üst bant yayınları olmayan uydu neredeyse kalmadığından tek bantlı V(dikey) ve H(yatay) çıkışları olan Dual LNB lerin tümüyle demode olduğu söylenebilir. Tüm bunlardan başka sekiz Universal çıkışlı olan Octal LNBler de üretildi, bu LNB ler santrallere alternatif olarak kullanılmaktadır.
Bu LNB nin giriş frekans aralığı 11.470 11.680 GHz, çıkış frekansları da RF (UHFnin pek kulanılmayan üst bandlarındadır). LNB uydudan gelen yayınların V(dikey) olanlarını 505 715 MHz, H(yatay) olanlarını da 765 845 MHz arası bir bandına indirmekte. Kazancı 50 63dB dir. Bu LNB ile birlikte kullanilabilecek bir de up converter vardır. Bununla LNBden 505 845 MHz arasındaki bant 1715 2055 MHz arasına yükseltiliyor. Böylece uydu alıcısı yayınları aynen normal LNB den gelenler gibi görmektedir. Konvertörün diğer çıkışından da kablodaki diğer (RF) yayınlar alınması sağlanıyor. Böylece en kötü kalite koaksiyel kablo ile en uzun mesafeye LNB den gelen uydu yayınları kolayca taşınabilmektedir.
FEED
Önde feed denilen yakın yerlerden yansıyıp gelen istenmeyen mikrodalgaları süzen, diğerlerini toplayıp yükselticinin probuna gönderen yuvarlak parçadır. Feed kısmı prensip olarak bir dalga klavuzu ile yansıtıcıdan oluşur. Yansıtıcı ağız kısmı yan açılardan gelip oluklu kısmın içine düşen dalgaları gönderir. Konsantrik (eş merkezli) dairesel duvarlar içeren ağız kısmı bu işlevini uygun şekilde yerine getirebilmesi için de çanağın şekline(parabol) uygun bir dairedir. Oluk duvarların derinliği çanağın odak uzaklığının çapına oranı (f/D) özelliğine göre hesaplandığından aynı tipte ve çaptaki çanaklardan daha çukur veya daha düz özellikte olanları için farklı ölçülerde olacaktır. Prime-focus (parabol) antenlerde kullanılan feedlerde bu duvarlar aynı düzlemdedir. Offset antenler için olan feedlerde ise dıştan içe doğru derinleşir geometridedir. Feed içinin yuvarlak olması her polarizasyonda gelen dalgayı aynen taşıyan bir dalga klavuzu olmasındandır. (Köşeli olsa idi sadece düzlem yüzeylerine uygun polaritede gelen dalgaları taşıyabilirdi). O yüzden yuvarlak ağız kısmının içine düşen ayakta duran mikrodalga (standing wave) bağlanacak LNB nin probuna verilmek istenen polariteye uygun polarma yapılarak doğrudan iletilir. Feedin önemli kalite özelliklerinden birisi polarizasyon yalıtımıdır (cross polar discrimination=polarizati on isolation). Yani bu polarmayı yaparken karşı polariteden de sızma olmayacak (örneğin 25dB polarma yalıtımlı) mekanik kusursuzluğa sahip olması gerekir. Bu olmazsa öbür polaritedeki benzer frekanslı yayin karışma yapabilir bu da yayının düzgün şekilde alınmasına engel olur. Feedin bir kalite özelliği de gerilim dalga oranı (VSWR) dir. Feedin iç yüzeylerinin geometrik kusursuzluğu verimde önemli olmaktadır. Giriş kısmındaki dairesellik ve örneğin gelen dalgayı polaritesine göre ikiye ayıran bir (orthomode transducer) dalga klavuzunda LNB bağlanan dörtköşe dalga çıkış uçlarında yüzey düzlemliği cok önemlidir.
Dolayısıyla feed kısmı kullanılacağı çanağın cinsine(offset /prime focus), çanağın çukur veya düz oluşuna (f/D ölçüsüne), hangi banttaki yayınların alınacağına (C/Ku), alınacak yayınların polaritelerinin doğrusal veya dairesel oluşuna ve tek çıkışlı çok çıkışlı, polarizörlü polarizörsüz oluşuna göre çok farklı özellik ve tiplerde olur. Ayrıca çanak çapı çok büyüdükçe feedin oluklu ağız kısmının çapının da biraz büyümesi beklenir. Hem dairesel hem doğrusal yayınları alabilen feedlerin içinde depolarizör denilen ve dairesel (R/L) polarizeli dalgayi doğrusal düzlemlerden (V/H) birine aktaran ve (çeyrek dalga boyunun 6mm dolayında olduğu ve yüzde 1-2 hassasiyet gerektiği düşünülürse) mekanik olarak 0.1 mm hassasiyetle işlenmiş bir teflon levha bulunur. Depolarizör dışında mekanik bir polarotörle kutupları 45 derece döndürmek de ayrıca gerekir. Servosuz bir feedle bu mümkün değildir.
Ku bandındaki hem dogrusal (V/H) hem de dairesel (RHC/LHC) yayinlari alabilmekte kullanilan servomotorlu bir offset anten feedi. Bu feedin polarizasyon yalitimi 25dB, VSWR bandın tümü için ortalama 1.45 (alt bant icin ayri üst bant icin ayri modelleri mevcut. feed alt+üst bant üniversal kullanılmıyor).
LNBF / FLANSLI LNB
Küçük boyutlu offset çanaklarda genellikle feedin LNBnin ayrılmaz şekilde tümleşik bir parçası olduğu LNBF kullanılır. Çanağa tek parca LNBF takılıp ucuna kablo bağlandığından feedin içini görmek de bilmek de gerekmez (su geçirmez şekilde kapatılmıştır). Bilmemiz gereken tek şey çanağımıza ve almak istediğimiz yayınlara uygun offset feedli bir LNBF olduğudur. Bu LNBlerdeki feed yapısı sadece lineer (V / H) yayınları almaya uygun özelliktedir.
Kendinden feedli LNB = LNBF çeşitleri
Daha büyük çaplı parabol (prime-focus) çanaklarda ise feed genellikle çanakla birlikte satılır. Çanağa uygun bir feed kullandığınızdan emin olabilmeniz için bu gereklidir. O yüzden çanakla birlikte aldığınız feed satın alacagınız flansli LNB ye takabilmeniz için tam doğru standart ölçüde vida delikleri bulunan bir flansa sahiptir. Eger lineer Ku bir LNB kullanacaksanız çanakla birlikte verilen feed genellikle size uyar. Eger amacınız C bandı veya dairesel polarizeli yayınları almak ise o zaman farkli bir feed kullanmanız gerekir. Böyle bir feed genellikle çanağınızla birlikte verilmez ayrıca temin etmeniz gerekir ve bu durumda da çanağınıza uyumu önemli hale gelir. Özelikle bilmeniz gereken şey feedlerin farklı dalga klavuzu boylarına sahip olduğu ve antenin kelepçesine bağladığınızda bilmeden odak uzaklığını değiştirebileceginizdir. Çanak üreticinizin bildirdiği odak uzaklığı ölçüsü genellikle feed agzından çanak dibine ölçülür. Bir feedi kullanabileceginizden emin olmak için kelepçeye bağladıktan sonra ağızdan çanak dibine ölçtüğünüzde canağınızın 94.3mm şeklinde verilen odak uzaklığına milimetrik olarak bulabilmeniz gerekir. Feedi ileri geri hareket ettirerek sinyal siddetini maksimum olarak yakaladığınız konum çubuk boyu ayarlarıyla elde edilebilmelidir. Ayrıca kelepçe düzeni feedinizin boynuyla sorunsuz ayarlama ve sabitleme yapilabilmesine uygun şekilde olmalıdır.
Flanşlı (Feedsiz) LNB çesitleri.
Uygun özellikte feed ağız kısmına vidalanarak kullanılır.
Feedin hemen arkasına vidalarla bağlanan flanşlı LNB nin beklenen özellikler ve iç yapısı bakımından LNBF den farkı yoktur. Yükseltici ve Konvertör kademelerinden oluşur. Eskiden (ve halen bazı profesyonel sistemlerde) LNA yükseltici kademesiyle LNC konvertör kademesi birbirine bağlanan ayrı modüller olarak bulunmaktadır. Ancak bugün LNB dendiğinde de LNC dendiğinde de tümleşik yükselticili konvertör aklımıza gelmektedir. LNA (Low Noise Amplifier) denilen yükseltici kısmi probuna kadar gelen mikrodalgayı elektrik akımı halinde gürültüsüz yükseltmek işlevine sahiptir. Bu işi görürken sinyale olabildiğince az gürültü katılmasi beklenir. NF (gürültü değerinin dB veya K değeri) sinyal/gürültü oranı düşük olan LNB ler tercih edilir. Aslında Ku bandı LNB lerde genellikle Noise Figure (dB) ile, C bandı LNBlerde ise Noise Temperature (Kelvin) olarak ifade edilen bu değer tüm sistemin etkinliği demek olan C/N (taşıyıcı sinyal seviyesinin gürültüye oranı) içinde çok da önemli olmayan bir paya sahiptir. Yayının EIRP (dBW) değeri, çanağın çapı, etkinliği, gürültü ısısı, sistemin gürültü değeri, bant genişliği gibi birçok değerin içinde bu değer de belirli ölçüde etkinliğe sahiptir. Bu değerlerin toplam etkinlik hesapları içinde göreceli yerini daha iyi anlayabilmek için önde gelen LNB üreticisi SMW nin bedava yüklenen yeni versiyon SMWLINK3 programını mutlaka çekmenizi öneriyorum. Ancak daha önceki 2. versiyonu da özellikle çok odaklı (multifocus) antenlere ilişkin hesap programları nedeniyle gerçekten görmeğe değer. (Ben sizin yerinize olsam her ikisini de çekerdim). Türkiyede önceleri 1.7-1.8 değerli LNB ler kullanılırken teknolojinin gelişmesi sonucu su anda en yaygın olarak kullanılan LNB ler 0.7- 0.8 dB gürültü faktörüne sahiptir. 0.6 ile 0.5 dB özellikte olanlar da bulunabilmektedir. Çok düşük gürültü değerine sahip LNB lerin göreceli fiyatı çoğu zaman sağladığı yarardan fazla yüksektir. Üstelik kuşkusuz bir LNB nin değerini olusturan parametreler cok daha fazla ve değişiktir. Örnegin bir LNB nin calışması gereken çok farklı ortam sıcaklıklarında bazı özelliklerinin değişip değişmemesi (temperature stability), ve osilatörünün faz gürültüsü (phase noise) özellikle veri aktarımlarında çok önemli olmaktadır. Örneğin çalışılan tüm farklı ortam sıcaklıkları içinde lokal osilatör stabilitesinin +/- 150, +/- 25 veya +/- 10 kHz mertebelerinde tanımlanabilmesi PLL li osilatörle sağlanan bir sonuçtur ve bu tip LNB ler özellikle pahalıdır.( +/- 3 MHz iyi bir degerdir) Osilatör faz gürültüsü 1KHz den itibaren yapılabilmektedir.(-75 dBc@10 kHz typ iyi bir değerdir). Bu ise aktarımda gerçekten düşük BER (Bit Error Rate) sağlanabilmesi sonucunu vermektedir. Farklı frekanslarda kazanç değişiminin engellenmesi de önemlidir örneğin iyi bir LNB de bu özellik 30MHzde 0.3dB dolayında olmaktadır. çıkış SWRsi en cok 2:1″ gibi bir değerle ifade edilir . Hemen tüm LNB tiplerinde cikis empedansı 75 ohm ve F tipi konnektör olarak standartlasmış gibidir. Giriş kısmında iki doğrusal polarite için gerilim kontroluyla seçilebilen V=14V, H=18V çift problu switchable tip de Ku bandı için artık standartlaşmış kabul edilebilir. Halen Standard Ku LNB denilince akla 10.0 GHz lokal osilatörlü Marconi switching(V/H) LNB gelmektedir. Bu tip LNB 12.5v 14.5v besleme gerilimini vertikal(dikey),15.5 18v besleme gerilimini ise horizontal(yatay) polarite seçimi kabul etmektedir. Daha sonra ortaya çıkan ve Enhanced LNB denilen tipin bundan farkı lokal osilatör frekansının 9.75 GHz olmasıdır. Ama bu da tek bantlıdır ve sadece 10.7-11.7 GHz. aralığında 2 GHz tunerli uydu alıcılarıyla calışır ve Astra 1A-D arası uydular için düşünülmüştür. Daha sonra ve özellikle digital yayınların başladığı son yıllarda ortaya çıkan ve yeni kullanıma açılan 11.7 GHZ üstü frekanstaki yayınları da alabilmek üzere gerekli sisteme sahip Universal LNB ortaya çıktı. Bu LNB lerin farkı çift lokal osilatör (9.75 and 10.60 GHz L.O) kullanılması ve birincisi 10.7 11.8 ve ikincisi 11.6 12.7 GHz olan iki bant arasında uydu alıcısından gönderilen 22 kHz sinyaliyle seçim yapılabilmesiydi. Artık hemen tüm avrupa uydularında üst bant yayınlar kullanıma açıldığından bu 4 bantlı (Quad Band) sistem standart hale gelmiştir. Bu arada kullanılan uydu alıcıları da 2.15GHz tunerli olmuşlardır. Tarama sahası daha az olan uydu alıcıları arada boşluk kaldığı için bazı yayınları alamayabilir. Alt üst bant geçişi için bu LNB bir 22kHz (0.5v p-p) sinyale gerek duyar ve bunu gördüğünde lokal osilatörünü 10.6GHz (üst banda) geçirir ve aksi halde hep 9.75GHz osilatörünü kullanarak sadece alt banttaki yayınları alır. V/H polarite algılaması yukarıda anlatılan eski Marconi LNB tipindekiyle aynıdır.
(L.O.) Local Oscillator (yerel osilatör) frekansı nedir?
LNB nin esas bir işinin de uydudan gelen frekansı düşürmek (down conversion) olduğunu biliyorsunuz. Çünkü kablolarımız 2GHz üstünde frekansları taşımakta çok isteksizdir. Uydu alıcılarındaki eski tip tunerler 1.75GHz e kadar yenileri ise 2.15GHz frekans üst sınırına sahiptirler. LNB frekans düşürme işlemini uydu sinyal frekansından belirli bir frekans değerini çıkartarak yapar. Bu değere LNB nin Lokal Osilatör frekansı ya da (LO) su denir. Örneğin uydu alıcınızdaki tunerin üst sınırı 1.75 ise ve almak istediğiniz en üst uydu frekansı 12.6 GHz ise LNBnizin L.O. su 10.85 olmalıdır. L.O.su 10.25 ise LNB niz 12GHz frekanslı bir uydu yayınını (12GHz 10.25GHz = 1.75GHz) uydu alıcınıza üst sınırı olan 1.75GHz frekansında gönderecektir. Farklı LNB tipleriyle ve uydu alıcılarla belirli frekanstaki yayını doğru alamama sorunu aslında basit hesapla açıklığa kavuşturulabilir. Simdi bizim bölgemizde geçerli olan Ku bandı frekansları (Telecom bandı) üst sınırı 12.750 GHz dir. Bugün Türkiyede satılan hemen tüm uydu alıcıları da 0.95 2.15GHz tunerlidir. Üst bant lokal osilatörü 10.6 olan bir üniversal LNB için taranabilecek frekanslar 2.15 + 10.6 = 12.75GHz bandın en üstüne kadar ulaşabilmektedir. Alt sınır ise 0.95 + 9.75 = 10.700GHz olmaktadır.
Eski tip LNB ve uydu alıcılar Bu günkü universal LNB ve 0.95 2.15GHz tünerli uydu alıcısı standardına ulaşılıncaya kadar yakın geçmişte birçok asamada ürünler ortaya çıkmıştır. Örneğin bugün bizim için artık geçerli olmayan eski tip bir alicinin tüneri 0.95 1.75GHz dır. Bu alıcı bir FSS LNB (10.0 GHz L.O.) ile kullanılırsa bulunubilecek kanal bant 10.9 11.7GHz arasıyla sınırlıdır. Eğer bir DBS LNB (10.75 GHz L.O.) kullanılırsa 11.7 12.5 GHz arası taranabilir. Sonuçta böyle iki tane LNB + bir tane Orthomode transducer + bir tane de 22KHz sviç bugünkü universal LNB ile sağlanan sonucu (biraz eksik olarak da olsa) vermektedir. Eskiden 0.95 1.75GHz tunerli alıcılarla çalışmak üzere tasarlanmis böyle birçok çeşit LNB bulunmaktadır. Telecom LNB (11.0 GHz L.O.) bunlardan bir diğeridir. 11.95 12.75 GHz bandında kullanilabilir. Voltaj (V/H) anahtarlaması bulunur. Voltaj anahtarlamasıyla üst banda geçirilen iki bantlı Dual band LNB de 0.95 1.75GHz tunerli alıcılarla 10.9 11.7 ve 11.7 12.5 GHz olmak üzere her iki banttan da yayın alabilir.Bu LNB ile alınamayan üst bant kısımları için Tripleband LNB geliştirilmiştir. Bu LNB 0.95 2.0 GHz tuner ile 10.9-11.8 ve 11.8-12.75 GHz arasindaki yayınları alabilir. Alamadığı en alt banttaki yayınları da alabilmek üzere Quadband LNB geliştirilmiştir. Bu LNB 0.95 2.05 GHz tuner kullaılarak 10.7-11.8 ve 11.7-12.8 GHz olmak üzere bugünkü bandın tümünü alabilir. Bu eski tip LNBlerin coğu flanşlı (ayrıca feed vidalanan) tiptedirler ve gürültü değerleri en eski tiplerde 3.0 dB ye kadar çıkmaktadır. (Bu gün ortalama 0.8dB yaygındır).
Çok girişli(multifocus) ve cok çıkıslı LNB ler
Halen avrupada en yaygın olarak kullanılan Astra + Hotbird başta olmak üzere birbirine yakın 2 uydunun yayınlarını tek çanakla alabilmek için geliştirilmiş (multifocus) çanak ve LNB ler bulunmaktadır. Monoblok bu LNB aslında 2 feed + 2 universal LNB + DiSEqC sviçten oluşmaktadır ve bir tek F konnektörlü çıkışa sahiptir. Alıcı DiSEqC, 22KHz ve 14/18V besleme seçimlerini kullanarak heriki uydunun toplam 8 polaritesindeki birkaç bin farklı kanal uydu yayınından istediğini seçebilmektedir. Bu tip LNBler ancak birbirine sabit mesafedeki öngörüldüğü iki uydu için kullanilabilirler. Degişik mesafedeki uydulardan tek canakla yayin alabilmek için kulanilan ceşitli multifocus uygulamalari bulunur.
Bu tür ve diğer çok çanaklı uygulamalarda kullanılabilmek üzere geliştirilmiş kendinden DiSEqC sviçli bir giriş ve bir çıkış F konnektörü bulunan geçisli LNB tipleri vardır.
Bunların dışında 2 çıkış F konnektörü bulunan Dual ve Twin LNBler bulunur. Bunların Standard, Enhanced ve Universal tipleri bulunur. Dual LNB tek bandın tek polaritesini (V-Dikey) bir çıkış tek polaritesini (H-yatay) diğer çıkış sabit olarak verir. Dual ve Twin LNBlerin dış görünüşleri birbirine çok benzer, ancak örneğin Twin Universal bir LNB nin iki çıkışının herbirinde tek üniversal LNBde bulunan 4 polarite de bulunur.İcinde aynı feede bağlanarak tek kabinin içine yerlestirilmis 2 tane üniversal LNB bulunur. Böyle bir LNB ile tek canağı paylaşan iki uydu alıcısı iki ayri çanak varmış gibi birbirinden bağımsız olarak tüm kanalları izleyebilirler. Dual LNB ise bir merkezi dağıtımda hem V(dikey), hem de H(yatay) polaritelerini aynı anda dağıtabilmek için kullanılır. Dört çıkışlı LNBler de Quad ve Quattro olmak üzere 2 ana türdedirler ve bunların da Standard, Enhanced ve Universal tipleri bulunur. Quad universal LNB bir canagi 4 farklı kullanıcıya birbirinden bagımsız olarak tüm polariteleri izleyebilecekleri şekilde dağıtmakta kullanılır. İçinde ayni feede bağlanarak tek kabinin içine yerleştirilmiş 4 tane üniversal LNB bulunur. Quattro LNB ise herbir çıkışından AltV(Dikey), AltH(yatay), üstV(dikey), üstH(yatay) olmak üzere 4 farkli polariteyi aynı anda vermektedir. Her çıkışında sadece ait olduğu polarite bulunur. Bir merkezi sistemden dağıtım için (headend de) kullanılır.
Aslında, terminoloji bakımından avrupa ile atlantiğin diğer yakası arasında önemli bir fark da var. Amerikada Dish Networkun iki farklı konumdaki uydularındaki tüm yayınları alıp birbirinden bağımsız iki uydu alıcıya verebilen (iki giriş, iki çıkışlı) LNB lere TWIN, dört çıkışlı olanlarına Quad deniyor. Tek konumdaki uyduların yayınlarını alıp iki alıcıya verebilen (tek giriş iki çıkışlı) LNB lere de DUAL deniyor. İki girişli Monoblok LNBlerin konumu cok özel olduğundan bu durum pek karışıklık yaratmayabilir, ancak avrupada şimdiden üst bant yayınları olmayan uydu neredeyse kalmadığından tek bantlı V(dikey) ve H(yatay) çıkışları olan Dual LNB lerin tümüyle demode olduğu söylenebilir. Tüm bunlardan başka sekiz Universal çıkışlı olan Octal LNBler de üretildi, bu LNB ler santrallere alternatif olarak kullanılmaktadır.